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Introduction

There were only a handful of talks about Frameworks at this year’s CHEP. There
were more talks about parallelization which covered the range from multi-threading,
multi-processing, vectorization, GPUs and FPGAs.

Frameworks

ATLAS

ATLAS presented a talk about their recent work on their version of AthenaMT1. They have con-
centrated on getting the framework components to work properly in a multi-threaded environ-
ment and will look into making the experiment algorithms thread-friendly in 2017.

They have been primarily concentrating on their non-event infrastructure Services in particular
Conditions and Incidents. ATLAS Services are similar to CMSSW Services in that they are glob-
al accessible to all code. Unlike CMSSW Services, which are not allowed to affect physics re-
sults, ATLAS Services are used for all data passing between framework modules.

Conditions access is done through the ATLAS Conditions Service. Unlike CMS where we only
update conditions on luminosity block boundaries, the ATLAS conditions can change on any ar-
bitrary event boundary. Therefore ATLAS has worked to allow multiple instances of the same
condition, which are for different intervals of validity or IOV, be accessible within the framework.
They accomplish this via two changes. The first change is to require pre-registration of what
conditions data each algorithm will be using. This pre-registration gives back a ConditionsHan-
dle which is then used to retrieve the data. The second part is the Conditions service was
change to hold containers of conditions object where each instance is for a different IOV. Talking
with the developers afterwards they say they have not yet figured out how to ‘garbage collection’
conditions for IOVs that are no longer needed. As part of this change, they have now moved
their geometry to be managed by the Conditions Service.

Incidents in Athena are the way it handles non-event state changes. Formerly, incidents could
be fired by any piece of code and reacted to by any other piece of code. This was problematic
for thread-safety. Upon further review, they determine that the system was far more flexible than
they needed so now incidents are transitions known and scheduled by the framework. This
matches how CMSSW handles such transitions.

1 https://indico.cern.ch/event/505613/contributions/2230829/attachments/1347615/2039402/
Oral-191.pdf
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The last bit of thread-safety work done to AthenaMT was to allow ‘re-entrant’ modules which are
inspired by the CMSSW global modules.

A non-thread related recent change to Athena was the ability to support EventViews. An Event-
View works like an EventStore exception it only allows access to information pertaining to a par-
ticular ‘region of interest’. This is intended to be used by their high level trigger system.

Future Circular Collider

The Future Circular Collider (FCC) design studies want to share software across the various
studies as well as to use software already in use by other experiments2. They are using Gaudi
for some of their work. However, they are using PODIO3 as their data model. The reason they
state is it was built with threading in mind (which as far as | can tell is it follows the same rules
as CMS data products) and treats python and C++ on equal footing. They are also using the
Heppy framework for their analysis (and code development?) framework. They specifically state
that share Heppy with CMS.

LHCb

LHCb will be extending Gaudi using ideas from the GaudiHive project, in particular, the task
scheduling system.4 They mention changing algorithms to be re-entrant (based again on CMS’
global modules) and that their data products must become immutable (which is something en-
forced in CMSSW).

On the event data model front, they want to be able to make better use of CPU vectorization. To
that end they are making their data products read only, not use inheritance, use single precision
where possible and allow different representations (e.g. ‘array of structures’ or ‘structures of ar-
rays’). They are investigating the possible use of PODIO.

FairMQ

Compressed Baryonic Matter (CBM) and PANDA are exploring the possibility of using FairMQ
framework for their online (and offline?) data processing.5-6 Both experiments use trigger less
readout at a very high rate and will do data selection strictly in software. Both experiments
therefore do not deal with individual events but instead deal with time slices. A time slice can
contain multiple events and one event can span more than one time slice. FairMQ is a multi-
process based framework which uses inter-process message queuing to pass data from one
component to the next. The framework provides configuration, process management and moni-
toring tools. The processes controlled by FairMQ can reside on the same system or different

2 https://indico.cern.ch/event/505613/contributions/2230842/attachments/1347109/2036951/
Oral-322.pdf

3 http://cds.cern.ch/record/2212785/files/AIDA-2020-NOTE-2016-004.pdf?version=1

4 https://indico.cern.ch/event/505613/contributions/2241722/attachments/1347463/2041645/
Bozzi-CHEP2016.pdf

5 https://indico.cern.ch/event/505613/contributions/2241723/attachments/1349201/2042791/
Oral-410-v2.pdf

6 https://indico.cern.ch/event/505613/contributions/2227258/attachments/1347539/2043446/
Oral-104.pdf
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systems. In addition the processes can be written in different languages (C, C++ and FORTRAN
were given as examples) and the processes themselves could be run on different operating sys-
tems. For FairMQ, task parallelization is accomplished by creating a series of different process-
es, each doing specific tasks, and having the message queues of these processes connected to
one another to for an application chain. Timeslice (or event) parallelization is accomplished by
making separate replicas of one application chain for each Timeslice to be processed concur-
rently. There was no mention about how this framework might be used within the context of a
standard grid style batch system, although CBM did say they are thinking about only storing
RAW data and having all users do reconstruction on the fly.

ALICE

The ALICE collaboration built a mini framework to study the effectiveness of different algorithms
on KNC/KNL hardware.? This framework isolates the algorithm from the host. Their approach is
to have independent threads each doing one particular task and then connect these threads
with thread-safe FIFOs. This matches their use of FairMQ. Their design is to have one thread on
the host system which reads data from a FIFO on the local host, fills entries on a FIFO on the
KNC/KNL system. The same host thread pulls data off a FIFO on the co-processor and puts the
data out on a FIFO on the host. This requires only one host thread to have to interact with the
KNC/KNL system. On the KNC/KNL system there is one thread handling the input from the host
and then filling a FIFO feeding into the algorithm being tested. Then another thread reading the
FIFO which was filled by the algorithm and writes to the FIFO read by the host. They showed
some simple benchmarks using bzip as the test algorithm where they had multiple threads each
running bzip independently. They ran tests where the algorithm was run on both a KNC and a
KNL system and then compared to the same algorithm run on a Sandybridge 8 core system with
two hyper-threads. They showed the KNC system ran only 1/5th as fast as the Sandybridge
system and the KNL was only 3/4th as fast as the Sandybridge.

Parallelization

ROOT

ROOT 6.08 is adding additional parallelization options to the users.8 They have a multi-process
(ROQOT::TProcessExecutor) and multi-threaded (TProcessExecutorandROOT::TThreadExecu-
tor) classes which allow map/reduce style parallelism. The multi-threaded code is build on TBB
although they do not explicitly expose the TBB interface to the user. They also can use threads
implicitly (if directed) when reading data from a TTree. They are also providing a few thread
helper items such the ROOT::TThreadedObject<T> class which provides a copy of an object for
each thread and then a facility to merge all the copies into one final object.

In addition to what is now available, the ROOT team is working on two R&D projects. The first is
exploring if it is possible to use functional programming concepts when expressing analysis. The
second is to integrate Spark and ROOT using PyROOT and ‘just-in-time’ compiled C++. They
showed some very preliminary results from such an integration.

7 https://indico.cern.ch/event/505613/contributions/2228467/attachments/1345422/2041671/
Oral-v3-349.pdf

8 https://indico.cern.ch/event/505613/contributions/2228338/attachments/1346729/2039459/
ParallelisminBOOT v4.pdf
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Offline Tracking

LHCDb is exploiting vectorization in their tracking reconstruction code.? During track finding, they
use SSE to calculate the Hough projection of two hits in parallel. They find that even after filling
the SSE vector they gain a 40% speed improvement. During track fitting they used SIMD for
transportation of covariance matrix from state. They gained a factor of 2 speedup by explicitly
writing out the calculation and another 5x by using explicit AVX instructions.

CMS has a project which is exploring Kalman filter tracking on parallel architectures.10 They are
working on exploiting both vectorization and parallelization. For now they are using a simplified
detector description as they work out the design. They are using Kalman filter for both track fit-
ting and track finding. When looking at vectorization performance, they see a factor of 4x when
doing track fitting but only 2x for track finding. The latter lower result comes from the fact that
track finding requires the code to branch often. As for parallelization, the developers switch from
using OpenMP to TBB and were able to obtain much better scaling. On an Intel KNC co-proces-
sor they can get near perfect scaling up to 61 threads for both track fitting and finding and reach
maximum of 100x speedup for track fitting and 85x for track finding.

A non-experiment specific talk was given by a project studying the application of Hough trans-
form to exploit parallelism.! They chose to use the Duda-Haart-Hough Transform which uses
polar coordinates for the transformation which converts a point into a sinusoid. The intersection
of sinusoids defines a line in the untransformed space. To decrease the computational complex-
ity, they discretized the transformed space into a NxN matrix and then look for high accumula-
tions in the bins of the matrix. Filling the matrix and looking for ‘hot spots’ can be done in paral-
lel. They showed that their implementation was more robust against noise than the standard
Hough-transform method. Although their algorithm scaled well as a function of number of
threads, it slowed down dramatically as the size of the matrix increased: 1000x slower when the
number of matrix points grew by 64x. The developers plan to further their study.

Detector Simulation

There were two talks about running Geant 4 on Intel many-core (KNC/KNL) architectures. The
first was from the Geant 4 team.12 They showed that they have extended the Geant 4 to allow
MPI to be used on-top of their existing threading model. They have continued improving their
multi-threaded application by decreasing the per thread memory requirement by more than fac-
tor of 2. When run on the KNL system, they find >93% efficiency when they use as many
threads as cores in their different test applications. They were able to get a 50% better event
throughput using the KNL system over a 12 core x 2 hyper threaded Xeon processor. They have
also begun testing the MPI based system on super-computers (Mira@ANL). They scale will to
64k threads but then hit a limit which they attribute to 1/0. The second talk was from the ATLAS

9 https://indico.cern.ch/event/505613/contributions/2230861/attachments/1347027/2038311/
Oral-567.pdf

10 https://indico.cern.ch/event/505613/contributions/2254599/attachments/1347645/2043445/
Oral-115-v8.pdf

11 https://indico.cern.ch/event/505613/contributions/2228349/attachments/1346689/2044379/
Oral-436.pdf

12 https://indico.cern.ch/event/505613/contributions/2228330/attachments/1343565/2043243/
Oral-161.pdf
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team.13 They are looking towards using the Xeon Phi based super-computers such as
Cori@NERSC. They believe simulation would be a good fit to super-computers since it is very
CPU intensive and has little input needs. However, they are concerned that memory usage and
lack of vectorization may prohibit efficient utilization of the system. In their test, they were able
to allow concurrent processing of all available parts of their simulation except for the handling of
output. When running on the KNL, they see excellent scaling up to the number of physical cores
and substantial gains when using hyper-threads. When using all the available threads, the
1.3GHz Xeon Phi had event throughput equivalent to 16x2 2.6GHz Xeon processor (which was
about 0.045 events/second). When processing a much simpler generator sample of just one
muon, they found that above 180 threads (or 23 events/second) their throughput actually sub-
stantially decreased. The decrease was due to the output hitting its single-threaded limit. To bet-
ter understand the performance characteristics of the simulation code running on the KNL ma-
chine, they profiled the code using Intel’s VTune. What they found was a very high instruction
cache miss rate.

Fermilab presented results on GeantV EM Physics Models.14 The work was done to explore the
feasibility of leveraging vectorization for physics model calculations using either vector units of
CPUs or GPUs. EM Physics was chosen since it takes approximately 30% of the total simula-
tion time (for a standalone CMS based benchmark). Since the standard sampling algorithm
used by Geant4 for modeling the physics involves many branches, an alternative algorithm (the
Alias Method) was used. The results show a speed up on Intel KNL type architectures of 3-6
when used on 10s of tracks while a gain of 30 for GPUs but that requires 104 tracks to be pro-
cessed simultaneously. Once the full work is completed, the code will be integrated into the
GeantV simulation system.

Another aspect of GeantV presented in a talk was VecGeom.15 VecGeom is a 3D geometric
shape library and navigation system which is designed to exploit vectorization by either process-
ing multiple tracks through the same volume or by doing multiple volume calculations (e.g.
checking for distance to all sides) concurrently. They now have implemented all of the shape
primitives needed by most HEP experiments. Using these new shapes within ALICE code gave
speedups of up to 9x. They also showed that navigation (e.g. finding the next volume along a
straight line) also benefits from vectorization. They implemented an algorithm which could calcu-
late intersections for child volumes concurrently within a parent volume. They were able to
demonstrate a greater than 2x speedup.

Generators
An effort was undertaken to have Sherpa run on supercomputers.16é This was done using MPI to
parallelize the work done on the phase space integration task (which is the most computational-

13 https://indico.cern.ch/event/505613/contributions/2230831/attachments/1347662/2047237/
Oral-v5-196.pdf

14 https://indico.cern.ch/event/505613/contributions/2228329/attachments/1347600/2041612/
Oral-158-v2.pdf

15 https://indico.cern.ch/event/505613/contributions/2228346/attachments/1349199/2045049/
Oral_393.pdf

16 https://indico.cern.ch/event/505613/contributions/2228354/attachments/1347575/2043279/
ORAL-v1-2228354-childers.pdf
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ly expensive task in Sherpa). The initial results showed little to know scaling as the number of
nodes were increased. They tracked the scaling problem to the fact that all MPI ranks were re-
quired to finish computing 5 phase space points before synchronizing and starting the next
phase. However, some phase space points take longer to calculate so the ranks had to wait for
the slowest one to catch up. Changing the ranks to stop calculating after a fix time, rather than
fix amount of work, allowed them to achieve good scaling on KNL based architectures.

Machine Learning

Machine learning was discussed several times with respect to parallelization. The TMVA devel-
opers discussed the work they have done to use CPU threads and GPUs when training a deep
neural network.17 It appears using multiple threads give a factor of 5 speedup and a factor of 24
speedup both compared to the single threaded implementation. LHCb showed results using a
neural network trained to find fake tracks in their HLT.18 It appears that they use hand written
vectorization code to speedup the neural net calculation.

Online Systems
Given their strict control over the computing hardware used, the online groups are exploring the
use of non CPU based parallel architectures, in particular GPGPUs and FPGAs.

ATLAS is exploring the use of GPGPUs in its high level trigger for Run 3.19 All of their tests
make use of a separate server process that is independent from their framework and handles all
interactions with the GPUs. This server process is shared by all the framework processes run-
ning on the machine. They have been testing GPU algorithms for track seeding (which is 5x
faster), calorimeter cluster finding (1.3-2x faster) and muon track finding (no speedup given). In
total they see a 20-40% event throughput gain and the server process can efficiently serve 14
framework processes.

ALICE has been using GPUs for tracking in their online system since Run 1.20 Their present
system is sufficient for Run 2 so they are concentrating on changes for Run 3. To improve their
efficiency they want to exploit the new GPU hardware’s ability to handle multiple kernels simul-
taneously. This allows them to utilize kernels in the case where there are not enough tracks in
one geometric region to fill the entire GPU. Along this same line, they are also testing filling the
GPU with kernels/data from multiple events. Although this increased the time to process one
event, the average time for all events decreased by 30%. The developers next want to explore
moving all the tracking steps to the GPUs to avoid copying to/from the host between the differ-
ent steps.

17 https://indico.cern.ch/event/505613/contributions/2228344/attachments/1347106/2041567/
oral-CHEP16-SergeiVGleyzer.pdf

18 https://indico.cern.ch/event/505613/contributions/2230861/attachments/1347027/2038311/
Oral-567.pdf

19 https://indico.cern.ch/event/505613/contributions/2227286/attachments/1348002/2046973/
Oral-482.pdf

20 https://indico.cern.ch/event/505613/contributions/2227277/attachments/1348662/2039067/
paper-387.pdf
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CMS had two talks about exploring the use of GPUs in the HLT for future upgrades. One talk
was about tracking2! and the second was about clustering in calorimetry22. The tracking project
is working on passing raw data to the GPU and then gets back tracks. For this talk they only
discussed track finding. To better utilize parallelization, they changed from using a ‘triplet propa-
gation’ algorithm for track finding to one based on cellular automatons (CA). They have imple-
mented the algorithms on both the GPU and CPU and get the same results. When comparing
the CA algorithm to the triplet algorithm they find greater track finding efficiency with an accept-
able increase in fake rates. Looking at the time performance of the algorithms, the CPU version
of the CA algorithm is 3x faster than the triplet and the CPU version of CA was 14x faster than
its CPU version. The calorimetry based talk was discussing how to handle the sampling
calorimeter which will be placed in the end caps of CMS. The problem is to find all the nearest
neighbors for 300,000 points within a few milliseconds. They chose an algorithm based on
FKDTree which has the following GPU friendly features: no recursion, just iteration and limited
branching. Testing found a speedup of 9 to 15 when comparing the GPU algorithm to a serial
CPU version of the same algorithm.

LHCb has tested the use of a GPU tracking algorithm in their HLT.23 They took their existing fast
tracking algorithm and rewrote it in CUDA to run on the GPU. To get sufficient parallelization,
they feed data from multiple events into the GPU algorithm. They were able to test this online in
their HLT but sending data to a node containing a GPU. The node was running multiple in-
stances of Gaudi and each of these instances ran tracking on the CPU as well as sent data to
and the from the GPU to do equivalent tracking. This allowed them to compare the results of the
CPU to the GPU. The Gaudi clients all sent data to an external process which handled commu-
nication with the GPU. This allowed them to queue up data from multiple events to be pro-
cessed simultaneously by the GPU. They found the results to be statistically similar (but not
identical) between the CPU and GPU algorithms and the GPU was slower than the CPU version
of the algorithm by 30-80% depending on how many Gaudi clients were sharing the GPU (with
more clients creating a better rate).

There were five talks about the use of FPGAs. On talk implemented a Convolutional Neural
Network algorithm on the FPGA to process signals from Micromegas detectors.24 They obtained
reasonable results but were limited by the precision of the data they were able to feed into the
FPGA. A second talk was from LHCb and their exploration of Intel Xeon/FPGA prototype applied
to their RICH particle id algorithm.25 They were able to get a 35x speedup but they were limited
by the data transfer to the FPGA. They also stressed that using OpenCL to program the FPGA

21 https://indico.cern.ch/event/505613/contributions/2227276/attachments/1348461/2045263/
Felice CHEP.pdf

22 https://indico.cern.ch/event/505613/contributions/2227279/attachments/1349993/2045264/
chep-fkdtree.pdf

23 https://indico.cern.ch/event/505613/contributions/2227265/attachments/1346639/2043332/
Oral-238.pdf

24 https://indico.cern.ch/event/505613/contributions/2227234/attachments/1347570/2041446/
Oral v3 004.pdf

25 https://indico.cern.ch/event/505613/contributions/2227272/attachments/1346688/2045079/
Oral-312.pdf
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was much better than the traditional approach. A third talk was from ALICE who uses FPGAs
already in their HLT and is using those to test ideas for Run 3.26 The FPGAs are presently used
to readout the data from the detector and now they are exploring having the FPGAs run cluster
finding reconstruction code directly on the data read by the hardware. A fourth talk outlined a
track finding algorithm inspired by human vision and which was suitable for parallelization using
FPGAs.27 The device encodes all possible tracking patterns and then finds the best match.
From the simulations they ran they believe the approach is promising for the HL-LHC. The fifth
talk was from CMS and covered track finding in the level 1 trigger for the HL-LHC.28 This would
have to run at 40MHz with a latency of only 4us. Two approaches are being tested. The first ap-
proach uses associated memories to do pattern recognition and then an FPGA to do track fit-
ting. The second approach uses Hough transform algorithm on the FPGA to do the pattern
recognition as well as the final track fitting. They are still working towards having a system
demonstration by the end of 2016.

26 https://indico.cern.ch/event/505613/contributions/2227259/attachments/1346753/2030983/
Oral-113.pdf

27 https://indico.cern.ch/event/505613/contributions/2227295/attachments/1346720/2045223/
Oral-v1-555.pdf

28 https://indico.cern.ch/event/505613/contributions/2227281/attachments/1350066/2045082/
Oral-404.pdf
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